a2 United States Patent

Croteau et al.

US009235322B1

US 9,235,322 B1
Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS, METHODS AND COMPUTER
PROGRAM PRODUCTS FOR A CLOUD
APPLICATION EDITOR

(71)
(72)

Applicant: CA, Inc., Islandia, NY (US)

Inventors: Beau Croteau, Bay Shore, NY (US);
David S. Tyree, Denver, CO (US);
Nathan J. Giardina, San Diego, CA
(US); Robert Hucik, Simi Valley, CA
(US)

(73)

")

Assignee: CA, Inc., New York, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 318 days.

@
(22)

(1)

Appl. No.: 13/791,978

Filed: Mar. 9, 2013

Int. CL.
GO6F 3/01
GO6F 3/0481
GO6F 3/00
U.S. CL
CPC i GO6F 3/04817 (2013.01)
Field of Classification Search

None

See application file for complete search history.

(2006.01)
(2013.01)
(2006.01)
(52)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

2012/0072910 Al1* 3/2012 Martinetal.cceoee. 718/1
2013/0054812 Al* 2/2013 DeCoteau 709/226
2013/0132875 Al* 5/2013 Allenetal. 715/765
2013/0232498 Al* 9/2013 Mangtani etal. 718/104
2013/0300747 Al* 11/2013 Wongetal. 345/440.2
2013/0318240 Al* 11/2013 Hebertetal. 709/226
2014/0047342 Al* 2/2014 Breternitz et al. .. 715/735
2014/0047413 Al* 2/2014 Sheiveetal. 717110
2014/0075413 Al* 3/2014 Binjrajka 7177121
2014/0108971 Al* 42014 Noetal 715/762
2014/0165060 Al1* 6/2014 Mulleretal. 718/1

* cited by examiner

Primary Examiner — Amy Ng

Assistant Examiner — Toan Vu

(74) Attorney, Agent, or Firm — Myers Bigel Sibley &
Sajovec, P.A.

(57) ABSTRACT

A graphic visualization layer in an interactive development
environment is displayed and used to create an application on
anode of acomputer network. The graphic visualization layer
includes graphical shapes manipulated by a user to generate
program language code for lifecycle stages of the application.
The graphical shapes include an application graphical shape
representing the application, a resource graphical shape rep-
resenting a resource for the application, an action graphical
shape representing an action for the application and a task
graphical shape representing a task of the action. A selection
of'the application graphical shape is received. An application
value for the application is received in an entry field of the
application graphical shape. Program language code is gen-
erated based on the selection of the application graphical
shape and the application value. The program language code
is executable to install the application on a node of the com-
puter network.

17 Claims, 9 Drawing Sheets

2002/0174416 Al* 11/2002 Batesetal. 717/128
2011/0283194 Al* 11/2011 Chenetal.ccoceeenee. 715/735
500 \
504 402
‘ Edit ' | Files | ‘ Code ‘ i Create Package H Publish H Start Debug |
Application named at version wmch has a homepage at with an loon located at ‘
which wili Install Tomeat and call il
and when
Create a virtual host on path
Copy fils [git] to directory [T]
Executs Shell Code 502
&
([(o] a4
L]
application named Hudson version 1.0 created.
Application homepage verified. /
Resources icon verified,
Actions resource tomcat installed, called hudson.
Tasks install action created.
Edit virtual host hudson created on path /.
Shell Commands File .git copied to directory /.
Vatiable execute shell code task initiated....
Tests

U.S. Patent Jan. 12, 2016 Sheet 1 of 9 US 9,235,322 Bl

100\

CLOUD NETWORK 102

NODE 3 130

NODE 2120

NODE 1 110

NODE 5 15

RESOURCE
150A

/

APPLICATION PROGRAMMING INTERFACE 160

162 -
-\ Install Application 1 on Resource 150A of Node 5 150

Node 5 150 is located at IP address 123.123.123.123

FIGURE 1

U.S. Patent Jan. 12, 2016 Sheet 2 of 9 US 9,235,322 Bl

NETWORK CLOUD 102

APPLICATION EXECUTION MANAGER 210

EDITOR 240
APPLICATION PROGRAM 220
APPLICATION TERM 222: APPLICATION 1 232
RESOURCE TERM 224: RESOURCE 1234
ACTION TERM 226: ACTION 1236
TASK TERM 226A: TASK 1 236A
TASK TERM 226B: TASK 2 236B
TASK TERM 226C: TASK 3 236C

FIGURE 2

U.S. Patent Jan. 12, 2016 Sheet 3 of 9 US 9,235,322 Bl

300 \

Display a graphic visualization layer in an interactive development
environment used to create an application on a node of a computer
network, the graphic visualization layer comprising a plurality of
graphical shapes operable by a user to generate program language 302

code for lifecycle stages of the application, wherein the plurality of /_
graphical shapes comprise an application graphical shape
representing the application, a resource graphical shape
representing a resource for the application, an action graphical
shape representing an action for the application and a task
graphical shape representing a task of the action

:

304
Receive a selection of the application graphical shape /_

l

Receive an application value for the application in an entry field of /_ 306
the application graphical shape

'

Generate program language code based on the selection of the 308
application graphical shape and the application value, wherein the
program language code Is executable to install the application on a

node of the computer network

FIGURE 3

U.S. Patent Jan. 12, 2016 Sheet 4 of 9 US 9,235,322 Bl

400 —\

P 402
7/

Edit ‘ Files Code Create Package—P‘PuinshH Start Debug \

s 404
410 420

(/{pplication named| Hudsor| at version which has a homepage at | hitp.//| with an icon located at| http:// ‘
which wi Install Tomeat and call it Hudson ‘

and when (Installed “ /_ 416

,,,,, 7
do Create a virtual host | hudson | on path ‘

/— M2 Copy file[.git] to directory

% Execute Shell Code

m_/

do
(exec IJ *| tomcat/bin/startup.sh ‘+J
| Lemaiotes [
.
[d

nstalle

do
L L :

Application / 408
Resources
Actions

Tasks

Edit

Shell Commands
Variable

Tests

N\
\— 406

FIGURE 4

U.S. Patent Jan. 12, 2016 Sheet 5 of 9 US 9,235,322 Bl

500 \
_— 504 — 402

— 7
‘ Edit H Files Code Create Package Publish—il Start Debug

(Application named at version @ which has a homepage at |http:/f |with an icon located at|http// {

which will E Install Tomeat and call it| Hudson ‘

and when (/m\ |
do (Create a virtual host | hudson |on path ,

Copy file to directory ‘

Execute Shell Code” |

A e 504

do /— ——
[[exec D]1 "] torncat/bin/startup.sh | +%
. _]
Installed
do
N
_ - : -
B application named Hudson version 1.0 created. 408

Application homepage verified. /
Resources icon verified.
Actions resource tomcat installed, called hudson.
Tasks install action created.
Edit virtual host hudson created on path /.
Shell Commands File .git copied to directory /.
Variable execute shell code task initiated....
Tests

FIGURE 5

U.S. Patent Jan. 12, 2016 Sheet 6 of 9 US 9,235,322 Bl

602
/—

600 \ Receive a selection of the resource graphical shape

I

_ ! , , 604
Receive a resource value for the resource in an entry field of the /—
resource graphical shape

v e 606

Receive a selection of the action graphical shape

Y

608
Receive an action value for the action in an entry field of the /—
action graphical shape

Y

610
Receive a selection of the task graphical shape /_

Y

Receive a task value for the task in an entry field of the task
graphical shape, wherein the program language code is 612
generated based on the selection of the resource graphical /—
shape, the resource value, the action graphical shape, the action
value, the selection of the task graphical shape and the task
value

FIGURE 6

U.S. Patent Jan. 12, 2016 Sheet 7 of 9 US 9,235,322 Bl

700 \

/— 702

app.resources(function(app, appData){
app.request({ type:'tomcat', name:'Hudson', logs:[]});
3

app.on("install", function(app, appData){ 704
app.allocateResources(); —
var resource={"type":"tomcat","name";"Hudson","logs":[]};
app.addVirtualHost(resource, "hudson","/");
app.pushToNodesWith(resource, 'hudson.war’, '/");
app.shellOnNodesWith(resource,function(appData,shell){
require(‘shelljs/global’);
exec('tomcat/bin/startup.sh’);
n;
;

FIGURE 7

U.S. Patent Jan. 12, 2016 Sheet 8 of 9 US 9,235,322 Bl

800 -—\

app.configOnNodesWith{("tomcat" function(appData){
ConfigFile.edit("tomcat/conf/server.xml” function(file){
file.lineWith(/<Connector port="8080"/, function(line){
806 —— line.replace("8080", appData.resources.tomcat_jira.ports["http port'].port);
»;
file. lineWith(/<Connector port="8009" protocol="AJPV1.3" redirectPort="8443" URIEncoding="UTF-
8" V>/, function(line){
line.replace("8009", appData.resources.tomcat_jira.ports.ajp_port.port);

802

3
file.lineWith{/<Server port="8005" shutdown="SHUTDOWN">/, function(line){
line.replace("8005", appData.resources.tomcat_jira.ports["control port"].port);

fiIé.lineWith(/<Context path="" docBase="\${catalina.home}Vatiassian-jira"/,function(line){
line.append(\n<Parameter name="jira.home" value="/home/'+appData.appKey+jira"/>");
D

» 804
ConfigFile.touch("jira/dbconfig.xml",
'<?xml version="1.0" encoding="UTF-8"?>"+
'<jira~-database-config>'+
'<name>defaultDS</name>'+
'<delegator-name>default</delegator-name>'+
'<database-type>mysgl</database-type>'+
'<schema-name></schema-name>'"+
'<jdbc-datasource>"+
‘<url>jdbc:mysql://'+appData.appKey+'_mysql_jira:3306/+appData.appKey+'_jira?
useUnicode=true&characterEncoding=utf8&sessionVariables=storage_engine=InnoDB</url>'+
'<driver-class>com.mysgl.jdbc.Driver</driver-class>'+
'susername>'"+appData.appKey+'</username>'+
'<password></password>'"+
'<pool-size>15</pool-size>'+
'<yalidation-query>select 1</validation-query>'+
'</jdbc-datasource>'+
'<fjira-database-config>'
)i
ConfigFile.edit("tomcat/conf/catalina.properties”, function(file){
file.setProperty("common.loader" function(prop){
prop.append(",${catalina.base}/lib/ext/* jar");
Pk

1
ConfigFile.edit("tomcat/bin/startup.sh",function(file){
file lineWith(AlVbinVsh/ function(line){
line.append(\nexpart JAVA_OPTS="$JAVA_OPTS -Xms512m -Xmx1224m -
XX:MaxPermSize=256m"\n");
line.append("\nexport PATH=/home/"+appData.appKey+"/jre1.6.0_32/bin:$PATH\
),

"

»

FIGURE 8

U.S. Patent Jan. 12, 2016 Sheet 9 of 9 US 9,235,322 Bl
4 N
COMPUTING DEVICE 900

COMMUNICATION INTERFACE 912
VOLATILE MEMORY
GPU 914 PROCESSOR 902 STORAGE 906
908
DISPLAY SCREEN NON-VOLATILE
910 MEMORY STORAGE
— 904
\. y,

FIGURE 9

US 9,235,322 Bl

1

SYSTEMS, METHODS AND COMPUTER
PROGRAM PRODUCTS FOR A CLOUD
APPLICATION EDITOR

TECHNICAL FIELD

The present disclosure relates generally to computer net-
works, software applications and cloud computing networks.

BACKGROUND

Cloud computing allows applications to be executed on
various computers or nodes of a computing network. Com-
puter programmers write programs to build applications for
nodes in a cloud network. Existing cloud platforms focus on
machines and servers. Building an application for a cloud
network requires a specific application configuration for a
node, including the location and resources of the node. Appli-
cation creation in this environment is not easily separated
from the configuration and maintenance details. Having to
program for specific application configurations adds an extra
layer of complexity for the user and limits the ability to install
and execute applications in a dynamic cloud environment.

BRIEF SUMMARY

According to an embodiment of the disclosure, a graphic
visualization layer in an interactive development environ-
ment is displayed and used to create an application on a node
of a computer network. The graphic visualization layer
includes a plurality of graphical shapes that are manipulated
by a user to generate program language code for lifecycle
stages of the application. The graphical shapes include an
application graphical shape representing the applicationand a
resource graphical shape representing a resource for the
application. The graphical shapes may further include an
action graphical shape representing an action for the applica-
tion and a task graphical shape representing a task of the
action. A selection of the application graphical shape is
received. An application value for the application is received
in an entry field of the application graphical shape. Program
language code is generated based on the selection of the
application graphical shape and the application value. The
program language code is executable to install the application
on a node of the computer network.

According to a further embodiment of the disclosure, a
selection of the resource graphical shape is received. The
resource represented by the resource graphical shape is
selected from a plurality of resources that are each used to
prepare the node for a type of application. A resource value
for the resource is received in an entry field of the resource
graphical shape. The program language code is generated
based further on the selection of the resource graphical shape
and the resource value.

According to a further embodiment, a selection of the
action graphical shape is received. An action value for the
action is received in an entry field of the action graphical
shape. A selection of the task graphical shape is received. A
task value for the task is received in an entry field of the task
graphical shape. The program language code is generated
based further on the selection of the action graphical shape,
the action value, the selection of the task graphical shape and
the task value.

In another embodiment, the graphical shapes of the graphic
visualization layer restrict users to a programming develop-
ment sequence of first application, then resource, then action
and then task.

10

15

20

25

30

35

40

45

50

55

60

65

2

In an embodiment, the application and resource graphical
shapes are independent of a node configuration prior to
execution. The application and resource graphical shapes
may also be independent of an application configuration prior
to execution.

In another embodiment, a debugging interface is displayed
in the interactive development environment. A temporary
installation of the application may be created. The debugging
interface incrementally steps through the creating the tempo-
rary installation while displaying a result of a respective
incremental step such that the user may verify operation of the
application.

Some other embodiments are directed to related methods,
systems and computer program products.

It is noted that aspects described with respect to one
embodiment may be incorporated in different embodiments
although not specifically described relative thereto. That is,
all embodiments and/or features of any embodiments can be
combined in any way and/or combination. Moreover, other
systems, methods, and/or computer program products
according to embodiments will be or become apparent to one
with skill in the art upon review of the following drawings and
detailed description. It is intended that all such additional
systems, methods, and/or computer program products be
included within this description, be within the scope of the
present invention, and be protected by the accompanying
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are illustrated by
way of example and are not limited by the accompanying
figures with like references indicating like elements.

FIG. 1 illustrates an existing system for building an appli-
cation for a cloud network;

FIG. 2 illustrates a conceptual view of a system for provid-
ing an application programming language for a cloud net-
work, according to various embodiments described herein;

FIG. 3 illustrates a process for providing an application
programming language for a cloud network, according to
various embodiments described herein;

FIG. 4 illustrates a display view of an application program-
ming language editor for a cloud network, according to vari-
ous embodiments described herein;

FIG. 5 illustrates another display view of an application
programming language editor for a cloud network, according
to various embodiments described herein;

FIG. 6 illustrates a further process for providing an appli-
cation programming language editor for a cloud network,
according to various embodiments described herein;

FIG. 7 illustrates example code of an application program-
ming language for a cloud network, according to various
embodiments described herein;

FIG. 8 illustrates example code of an application program-
ming language for a cloud network, according to various
embodiments described herein;

FIG. 9 is a block diagram of a computing device in which
embodiments can be implemented.

DETAILED DESCRIPTION

Embodiments of the present disclosure will be described
more fully hereinafter with reference to the accompanying
drawings. Other embodiments may take many different forms
and should not be construed as limited to the embodiments set
forth herein. Like numbers refer to like elements throughout.

US 9,235,322 Bl

3

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting to other embodiments. As used herein, the singular
forms “a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises,”
“comprising,” “includes” and/or “including” when used
herein, specity the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude
the presence or addition of one or more other features, inte-
gers, steps, operations, elements, components, and/or groups
thereof.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which this invention belongs. It will be further understood
that terms used herein should be interpreted as having a
meaning thatis consistent with their meaning in the context of
this specification and the relevant art and will not be inter-
preted in an idealized or overly formal sense unless expressly
so defined herein.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described herein
in any of a number of patentable classes or context including
any new and useful process, machine, manufacture, or com-
position of matter, or any new and useful improvement
thereof. Accordingly, aspects of the present disclosure may be
implemented as entirely hardware, entirely software (includ-
ing firmware, resident software, micro-code, etc.) or com-
bined software and hardware implementation that may all
generally be referred to herein as a “circuit,” “module,” “com-
ponent,” or “system.” Furthermore, aspects of the present
disclosure may take the form of a computer program product
embodied in one or more computer readable media having
computer readable program code embodied thereon.

Existing cloud platforms focus on machines and require an
application configuration to be specified ahead of time before
installation or execution of the application on a specified
node. FIG. 1 shows system 100 with a cloud network 102 of
nodes 1 to 5 (110-150). A typical application programming
interface 160 is concerned with identifying the specific node
to be utilized by an application. A user has to ask whether
there is a machine with Resource 150A. Window 162 is
focused on specifying, up front in the build programming
language, application configuration information such as
where the node is located and how the application will be
configured with the resources of the node.

Application configurations usually involve preparing or
allocating resources and configuring the application to use the
resources. An application configuration may involve setting
its name, creating a user, uploading a database, or other affir-
mative steps to prepare a specified node and its resources for
an application. A typical installation may require download-
ing an application package, locating systems (database and
web server) to install the package on, installing a database and
web server software, installing the application package, con-
figuring the application package and testing the installation.
This adds complexity and additional hurdles for an applica-
tion user or system administrator. A user may have an appli-
cation the user wishes to create and would prefer a high-level,
straightforward way to build the application and have it
executed within a large and dynamic network of resources.

Various embodiments described herein provide an editor
for a programming language for building, deploying, scaling,
maintaining, and/or testing applications based in a cloud net-
work, whether on-premise host computers and/or remote host
computers. Applications may be written and built to be con-

10

15

20

25

30

35

40

45

50

55

60

65

4

figured with resources in real time as a result of executing the
programming language. At execution, application require-
ments and configuration steps may take advantage of infor-
mation acquired from earlier configuration steps to make
application configuration decisions. Examples of applica-
tions that may be built, configured, tested and executed
include managed hosting applications such as Rackspace®
applications, application services such as Amazon Web Ser-
vices (AWS)® applications, portable development environ-
ments such as Vagrant® applications, debugging application
such as Bugnet® applications, issue tracking application such
as JIRA® applications, version control repositories such as
Gitlab® applications, etc. In some regards, the programming
language may be considered a Domain Specific Language
(DSL) or a language created for a specific purpose.

Various embodiments described herein may be used for
constructing cloud applications in a way that is technology
agnostic. Technology is generally the foundation on which
applications are built, but with various embodiments
described herein, a user need not ask questions such as “Do |
have a virtual machine with a MySQL® database on it?” or
“Do 1 have one with Ruby on it?” Embodiments of the
described declarative programming language can take care of
these issues and cause a computer system or application man-
ager to make relevant decisions for the programmer and/or
user.

Embodiments of the described editor 240 for the declara-
tive programming language allow a programmer and/or user
to:

Create an Application;

Allocate Resources for that Application;

Perform Actions on that Resource;

Define Tasks to perform during those Actions;

Edit text and configuration files;

Perform command line actions;

Parameterize portions of the application for re-usability;

Testaspects of the overall application to ensure success and
reachability; and

Utilize dynamic configuration data when needed.

There are many features of the language and editor
described in the embodiments. From the viewpoint of the
programmer, the language is server agnostic. The language
may isolate the building of applications from understanding
specific machines. It does not require that the programmer
understand where resources, servers or virtual machines are
currently allocated in order to define actions around all
aspects of an application’s life cycle.

Rather than specifying machines, a programmer can
specify resources that will be used with the application. In
many cases, the resources are necessary for an application.
Resources can include, among others, a database (e.g.,
MySQL® database, MSSQL® database, PostreSQL® data-
base), an application server (e.g., J2EE® server, Tomcat®
server, NodeJS® server, Ruby on Rails® server) and/or other
supporting infrastructure or services such as a message queue
or a transaction server. The language, when executed, will
utilize or allocate resources as necessary, depending on nodes
that are available at the time of execution. This generates
configuration information about those resources.

The programming language may use application configu-
ration information that is stored or captured in a separate
process to drive application configuration. For example, a
virtual host may be allocated, setting up DNS and an HTTP
proxy so the application can be reached by the world. Net-
work ports can be allocated. A port can be reserved and saved
in the application configuration file. Application configura-
tion files can be modified using information from previous

US 9,235,322 Bl

5

steps. Files can be copied to various resources. Shell code can
be executed, often with application configuration informa-
tion.

Some configuration information may be abstracted from
installation information. If the application or same type of
application is installed elsewhere, those instructions as to
how to set up the same application package can be accessed at
execution time and used for configuration.

FIG. 2 illustrates an exemplary system 200 of a computing
environment involving cloud network 102. Cloud network
102 facilitates wireless or wired communication between
computing devices, and may communicate using, for
example, IP packets, Frame Relay frames, Asynchronous
Transfer Mode (ATM) cells, voice, video, data, and other
suitable information between network addresses. Cloud net-
work 102 may include one or more local area networks
(LANSs), radio access networks (RANs), metropolitan area
networks (MANS), wide area networks (WANs), virtual pri-
vate networks (VPNs), a portion of the global computer net-
work known as the Internet, and/or any other communication
system or systems at one or more locations. In FIG. 1, cloud
network 102 shows nodes 1-5 (110-150), but according to the
programmer, it is just cloud network 102 in system 200 of
FIG. 2.

According to the embodiment in FIG. 2, users and/or
administrators may use application execution manager 210 to
build, test, compile, install, execute and/or otherwise handle
applications. Application execution manager 210 may be or
may include an editor 240 with a user interface that functions
as described in embodiments below. Application 1 232 may
be built for installation or execution on nodes of cloud net-
work 102 with application program 220. No application con-
figuration is required to be specified in application program
220 prior to compilation and execution. Application execu-
tion manager 210 will associate an application configuration
with Application 1 232 based on a selection from nodes
110-150 when application program 220 is executed. A node
may be selected at or near the time of execution. According to
some embodiments, installation details may be used to
develop application configurations.

Each node may have certain resources prepared for the
application. In some cases, resources may be allocated to
selected nodes. These resources may also be specified in
application program 220.

Application program 220 illustrates Application Term 222,
which represents a language component used to build high
level application object Application 1 232. Application 1232
represents the application and the lifecycle of the application.
One or more resources needed by the application, such as
Resource 1 234, may be prepared for Application 1 232 using
Resource Term 224. A resource may be a database and/or
some software stack that provides functionality required by
the application. At this time, no application configuration
specific to a node is necessary. This can be advantageous as
the nodes in a network or cloud and their configurations may
change between now and the time of execution.

Next, actions can be defined for different lifecycle events,
including but not limited to, install, uninstall, backup and/or
restore. Action Term 226 may be used for creating Action 1
236. Within each action, various tasks can be defined, such as
allocating a port, copying a file from the package file, execut-
ing a shell command, editing a file, etc. Task Terms 226 A-C
may be used to define Tasks 236 A-C.

FIG. 3 shows a flowchart 300 for an editor, such as editor
240, for the application programming language that provides
a user terms or graphical user interface components, accord-
ing to an embodiment. In block 302, a graphic visualization

20

30

40

45

55

6

layer in an interactive development environment used to cre-
ate an application on a node of a computer network is dis-
played. The graphic visualization layer includes a plurality of
graphical shapes that are manipulated by a user to generate
program language code for lifecycle stages of the application.
The graphical shapes may be rectangles, squares, circles, or
any other shape or polygon representing a component of a
program for any stage in a lifecycle of an application, includ-
ing but not limited to, installing and/or executing an applica-
tion on a node of cloud network 102. Example shapes are
shown in FIG. 4.

The shapes illustrated in FIG. 4 are example graphical
representations that represent programming terms and sim-
plifty programming an application for cloud network 102.
Entry values may be entered at times, but large portions of
textual coding are not necessary (although a user may switch
to a code view of the program if the user desires). Less textual
coding makes for a more user friendly tool. A user does not
need to have a thorough knowledge of a programming lan-
guage nor worry about perfect spelling and use of the pro-
gramming keywords or syntax. In addition, the user does not
need to have knowledge of the nodes or application configu-
rations for the nodes in cloud network 102.

The graphical shapes may include an application graphical
shape representing the application, a resource graphical
shape representing a resource for the application, an action
graphical shape representing an action for the application and
a task graphical shape representing a task of the action.
Graphical shapes may also be used for other aspects of devel-
oping a programming language.

FIG. 4 shows display view 400, according to various
embodiments described herein. A menu bar, such as menu bar
402, may provide functions for selecting files. Menu bar 402
may provide for simple lookup and selection of files that may
be used in an application package. Window 408 may show a
file directory view that shows files that may be associated with
the application. These files may be dragged into appropriate
graphical shapes to point to them in the programming code.
Window 408, or any other windows, may also be used to show
code text, debugging steps or other editor information.

Menu bar 402 may be used for managing difterent stages of
development. These stages of development may include, but
are not limited to, creating a package for application creation,
publishing a package, starting a debug process, stopping a
debug process and/or any other stages.

Display window 404 shows an example program in editor
240, similar to application program 220 of FIG. 2. A selection
of the application graphical shape is received (block 304).
Application graphical shape 410 may represent application
term 222. Application graphical shape 410 may be selected
from a menu or some other repository or menu, such as menu
406. It may contain entry fields, such as entry field 420, where
application values, such as application value 232 may be
entered by the user and/or editor 240. An application value for
the application is received in an entry field of the application
graphical shape (block 306).

Application values may include a name for the application
or application instance, a type of application, a version of the
application, and/or a homepage or internet location of the
application. Application values may also include other infor-
mation that identifies how a user can find and use the appli-
cation, absent of any application configuration details.

Program language code is generated based on the selection
of the application graphical shape and the application value
(block 308). The selection of the application graphical shape
invokes an application term that is a syntax keyword of the
program language code that is used to generate instructions to

US 9,235,322 Bl

7

create and prepare the application according to any entered
application values. The program language code places the
entry values in the proper location in the program language
code with respect to the application term. The program lan-
guage code is executable to install the application on a node of
the computer network.

A resource term of the declarative programming language
is obtained for preparing a resource for the application. The
resource term is independent of the application configuration
prior to compilation of the resource term and the application
configuration prepares the resource of a selected node of the
node network for the application at execution time of the
resource term. Resource preparation may involve allocating
the resource to one or more nodes of the network.

FIG. 6 illustrates a flowchart 600 that shows a further
process for using an editor, such as editor 240, for an appli-
cation programming language. At block 602, a selection of a
resource graphical shape 412 is received. Resource graphical
shape 412 may represent resource term 224 of application
program 220 of FIG. 2. The resource or resource term 224
represented by resource graphical shape 412 may be selected
from a plurality of resources that are each used to prepare the
node for a type of application. Different resources may be
displayed in editor 240 and a resource selection may be
selected from the displayed resources. For example, a web
server resource may be selected over a database resource
depending on the type of application. The user may be
restricted to certain resources according to the application
graphical shape selection or any values or information asso-
ciated with the application represented by the application
graphical shape. In some cases, multiple resources may be
selected for one or more resource graphical shapes. Resource
graphical shape 412 may also have entry fields to receive
resource values, such as resource value 234 (block 604).

An action term of the declarative programming language is
obtained for performing an action of the application. The
action term is independent of the application configuration
prior to compilation of the action term. Actions may be writ-
ten before knowing the information from the application con-
figuration.

A selection of an action graphical shape 414 is received
(block 606). Action graphical shape 414 may represent action
term 226 of application program 220. Action graphical shape
414 may also have entry fields to receive action values, such
as action value 236 (block 608).

A task term of the declarative programming language is
obtained for performing a task of the action, wherein the task
term is independent of the application configuration prior to
compilation of the task term. In most cases, a programming
language includes an application term, one or more resource
terms, one or more actions terms and one or more task terms
associated with each action term. In some cases, any combi-
nation and/or subcombination of terms may be used.

A selection of a task graphical shape 416 is received (block
610). Task graphical shape 416 may represent task term 226A
of application program 220. The task or task term 226A
represented by task graphical shape 416 may be selected from
aplurality of tasks that are each used to carry out the action for
the application. As shown in FIG. 4, there are different types
of'tasks. Task graphical shape 416 may also have entry fields
to receive task values, such as task value 236A (block 612).
Multiple tasks may be used for an action. Multiple tasks are
shown in F1G. 4 for the action represented by action graphical
shape 414. Program language code is generated further based
on the selection of the resource graphical shape, the resource
value, the action graphical shape, the action value, the selec-
tion of the task graphical shape and the task value.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Theresulting programming language code may be in a well
known language code or scripting language code, such as
JavaScript. In other cases, the programming language code
may be a proprietary code. In various cases, the programming
language code may serve the purpose of an application, an
installation script, a response file, or any other useful appli-
cation for a node of cloud network 102.

The programming language code, with its terms and cor-
responding values, may be compiled. Compilation may
involve gathering terms and values into a program. This may
be performed in real time as graphical shapes are set into
place and values are entered. This may also take place at a
defined time or by a defined action of the programmer. Com-
pilation may also include generating code, such as a JavaS-
cript program. In some cases, compilation may also include
generating lower level code for execution.

The programming language code may also be executed.
Execution may involve carrying out instructions according to
compiled terms to build, install, carry out, update, modify
and/or remove the application. Other application lifecycle
operations not listed here may be performed for the applica-
tion. The application configuration is associated with the
application and the application is built on one or more nodes
to be ready for use.

When the application term is executed, an application con-
figuration is associated with the application at execution time.
The application configuration configures the application for
use on a selected node. The node and its configuration, such as
IP address or DNS name, may be selected at execution time,
without any such node information entered by the user prior
to compilation and/or execution. The application configura-
tion was also not specified in the programming language of
the user. The application configuration is developed based on
the selected node. This may involve details about the location
of the node and resources on the node or resources to be
allocated on the node.

Resources for the application may be prepared for the
application at the time the resource term is executed. In many
embodiments, resources are allocated to the selected node or
nodes. Resources may be identified, configured and/or allo-
cated as part of the application configuration. As the language
proceeds step by step, the application configuration may build
upon previous configuration steps. In some cases, values in
later steps are replaced or filled with values from previous or
earlier steps.

Step by step procession of the language may be followed in
the creation of a temporary installation of the application. For
example, if debug mode of editor 240 is selected, incremental
steps in the creation of the application may be performed
under the control of the user. Window 408 of FIG. 5 shows
messages or information related to successtul (or unsuccess-
ful) completion of the application build or package. In display
view 500 of F1G. 5, the Execute Shell Code 502 is highlighted
as this is the current step of the debugger. A related message
is shown in bold in window 408. This step is initiating execu-
tion of the shell file specified in an entry field of task graphical
shape 504. The debugger uses the temporary installation of
the application to verify that this task will be successful in an
actual instance of the application on a node of cloud network
102.

According to various embodiments described herein, the
same program and its generated code may be executed by the
same user twice or by two different users. The result will be
separate instances of the application, whether on the same
node or on different nodes. This illustrates the dynamic
resource utilization of the application programming lan-
guage. The programming language code is node agnostic. A

US 9,235,322 Bl

9

nodeis selected and an application configured upon execution
time. Therefore, the same or different nodes may be selected.
However, from the user viewpoint, the user does not care as
long as the application is created. Therefore, the user will find
the simple, discrete tools and process of editor 240 advanta-
geous.

The user may also benefit from any direction editor 240
provides to a user in the development process. In various
embodiments, the user is restricted to a development process
sequence of application term, resource term, action term and
then task term. The user has to select the application graphical
shape, and maybe enter the appropriate values in the
prompted entry fields, before selection the resource graphical
shape. In some cases, the user may not be restricted to the
development sequence. However, such restrictions allow the
user to avoid programming or structural mistakes. The
graphical shapes may be designed to only fit or snap into other
shapes a certain way based on the appropriate development
sequence. The graphical shapes may limit the user to only
valid steps.

As mentioned above, multiple application instances may
exist on the same node. This is possible, in part, by dynamic
application variables generated on a per-application basis. In
an embodiment, an application key or appKey [A-Za-z0-9] is
generated for each application. The application keys may be
randomly generated. Application keys may be used to
uniquely identify applications and instances of applications.
Application keys isolate or shield applications from other
applications. The application key described here allows you
to introduce application specific values into your application
configuration and as a result allows you to make generic what
would otherwise be a static variable.

A unique application variable may be generated for the
application at the execution time of the application term. The
unique application variable introduces application specific
values into the application configuration of the respective
application on the selected node at the execution time of the
application term. Application specific values can include the
use of a resource name specified in the application installation
step, the application key that was generated and the resource
type based on the type of resource requested. An installation
directory for the application may use the application key in
naming. The user associated with the installation may also be
named by the application key.

A second unique application variable may be generated for
asecond application on the selected node of a same type as the
application and wherein the application and the second appli-
cation may be executed on the selected node simultaneously.

In an embodiment, a database is created and named, per-
haps with the application key (e.g., application key—speci-
fied database name—database type). This is a first piece of
configuration information. This database would be allocated
on a particular node. Application execution manager 210 may
provide its own domain name service (DNS) infrastructure
which will allow any application to ask for the IP address
behind a named resource. When a DNS query is made for the
named database, application execution manager 210 may
respond with the IP address of the database server that the
database is installed upon. This information may be stored in
an application configuration record, which is a structure con-
taining all configuration information that is known for a par-
ticular application.

Once the database is allocated, the application obtains
instructions for how to use the database. The application
configuration file is modified. In some cases, the application

20

40

45

55

10

configuration file associated with the application is opened, a
database connection string is searched and replaced with the
database name (and port).

The language provides a template for the application
execution manager 210 and/or editor 240 to follow to install
an application. As the language is executed, various opera-
tions take place to generate configuration information, which
is then used to fill in data required for other operations in the
execution of the application. Such as in the example above,
until the database is allocated, the name of the database and
how to communicate with it are missing. Allocating the data-
base will produce sufficient information for the application
configuration to configure the application for the database.

Embodiments of the described language are designed with
re-usability and cleaner programming language statements in
mind. In some embodiments, the language was designed from
the ground up to provide command-line and web-based
requests in almost the same syntax or manner. An example of
the language is shown in example code 700 in FIG. 7.

In the example code 700, an application term 702 may be
represented by the keyword “app”, which creates the appli-
cation object. No details of an application configuration need
to be specified by the programmer. The language will create
the configuration object (“appData” object in the example
code) to contain the future application specific configuration
data. Such configuration data may not be developed until
execution time.

The application may need a resource prepared for an appli-
cation of its type. A resource keyword such as resource term
704 may be used to prepare resources for use by an applica-
tion. For example, “allocateResources” may be used with
“pushToNodesWith” to prepare whatever nodes are capable
or selected to utilize a specified resource. In a further embodi-
ment, sample language 700 also allows execution on remote
nodes using the resources selected so that applications can be
executed in different execution contexts.

FIG. 8 shows another portion 800 of the programming
language, according to an embodiment. The language as writ-
ten in portion 800 is independent of an application configu-
ration. In this example, language keyword term 802 “app-
Data” is used to maintain application configuration data, but
prior to compilation, there is no application configuration
information to associate with the application. As nodes are
selected and resources are allocated at execution time, appli-
cation configuration information is developed in appData.
The “line.replace” keyword term 806 replaces placeholder
values with application configuration information, which
appData helps to collect and maintain. When the application
object is populated with the node, resource and configuration
information obtained at execution time, the application con-
figuration is associated with the application.

Keyword term 804 or “appKey” represents an application
key to be generated for this application so that it is isolated
from other applications of the same type. This provides for
multi-tenant configurations. Applications may be the same
type but are allowed to coexist on the same operating system.
Application keys are examples of unique identifiers that iso-
late each application from each other.

In an embodiment, editor 240 may operate through a
browser on a node or computing device. The browser may be
any commonly used browser, including any multithreading
browser.

As will be appreciated by one skilled in the art, aspects of
the disclosure may be embodied as a method, data processing
system, and/or computer program product. Furthermore,
embodiments may take the form of a computer program prod-
uct on a tangible computer readable storage medium having

US 9,235,322 Bl

11

computer program code embodied in the medium that can be
executed by a computing device.

FIG. 9 is an example computer system 900 in which
embodiments of the present disclosure, or portions thereof,
may be implemented as computer-readable code. For
example, the components of application program 220, appli-
cation execution manager 210, editor 240 or any other com-
ponents of systems 200, 400-500 and 700-800 or methods
300 and 600 may be implemented in one or more computer
devices 900 using hardware, software implemented with
hardware, firmware, tangible computer-readable storage
media having instructions stored thereon, or a combination
thereof and may be implemented in one or more computer
systems or other processing systems. Computer devices 900
may also be virtualized instances of computers. Components
and methods in FIGS. 2-8 may be embodied in any combina-
tion of hardware and software.

Computing device 900 may include one or more processors
902, one or more non-volatile storage mediums 904, one or
more memory devices 906, a communication infrastructure
908, a display screen 910 and a communication interface 912.
Computing device 900 may also have networking or commu-
nication controllers, input devices (keyboard, a mouse, touch
screen, etc.) and output devices (printer or display).

Processor(s) 902 are configured to execute computer pro-
gram code from memory devices 904 or 906 to perform at
least some of the operations and methods described herein,
and may be any conventional or special purpose processor,
including, but not limited to, digital signal processor (DSP),
field programmable gate array (FPGA), application specific
integrated circuit (ASIC), and multi-core processors.

GPU 914 is a specialized processor that executes instruc-
tions and programs, selected for complex graphics and math-
ematical operations, in parallel.

Non-volatile storage 904 may include one or more of a hard
disk drive, flash memory, and like devices that may store
computer program instructions and data on computer-read-
able media. One or more of non-volatile storage device 904
may be a removable storage device.

Memory devices 906 may include one or more volatile
memory devices such as but not limited to, random access
memory. Communication infrastructure 908 may include one
or more device interconnection buses such as Ethernet,
Peripheral Component Interconnect (PCI), and the like.

Typically, computer instructions are executed using one or
more processors 902 and can be stored in non-volatile storage
medium 904 or memory devices 906.

Display screen 910 allows results of the computer opera-
tions to be displayed to a user or an application developer.

Communication interface 912 allows software and data to
be transterred between computer system 900 and external
devices. Communication interface 912 may include a
modem, a network interface (such as an Ethernet card), a
communications port, a PCMCIA slot and card, or the like.
Software and data transferred via communication interface
912 may be in the form of signals, which may be electronic,
electromagnetic, optical, or other signals capable of being
received by communication interface 912. These signals may
be provided to communication interface 912 via a communi-
cations path. The communications path carries signals and
may be implemented using wire or cable, fiber optics, a phone
line, a cellular phone link, an RF link or other communica-
tions channels. According to an embodiment, a host operating
system functionally interconnects any computing device or
hardware platform with users and is responsible for the man-
agement and coordination of activities and the sharing of the
computer resources.

10

15

20

25

30

40

45

50

55

60

65

12

Any combination of one or more computer readable media
may be utilized. The computer readable media may be a
computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device, or any suitable combination of the fore-
going. More specific examples (a non-exhaustive list) of the
computer readable storage medium would include the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer
readable signal medium may be transmitted using any appro-
priate medium, including but not limited to wireless, wireline,
optical fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java, Java-
Script, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#,
VB.NET, Python or the like, conventional procedural pro-
gramming languages, such as the “C” programming lan-
guage, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP,
ABAP, dynamic programming languages such as Python,
Ruby and Groovy, or other programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider) or in a cloud computer environment or offered as a
service such as a Software as a Service (SaaS).

Aspects of the present disclosure are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, systems and computer program products according
to embodiments. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-

US 9,235,322 Bl

13

mable data processing apparatus, create a mechanism for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that when executed can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions when stored in the computer readable medium
produce an article of manufacture including instructions
which when executed, cause a computer to implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
be loaded onto a computer, other programmable instruction
execution apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other
programmable apparatuses or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable appa-
ratus provide processes for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

It is to be understood that the functions/acts noted in the
blocks may occur out of the order noted in the operational
illustrations. For example, two blocks shown in succession
may in fact be executed substantially concurrently or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality/acts involved. Although
some of the diagrams include arrows on communication paths
to show a primary direction of communication, it is to be
understood that communication may occur in the opposite
direction to the depicted arrows.

Many different embodiments have been disclosed herein,
in connection with the above description and the drawings. It
will be understood that it would be unduly repetitious and
obfuscating to literally describe and illustrate every combi-
nation and subcombination of these embodiments. Accord-
ingly, all embodiments can be combined in any way and/or
combination, and the present specification, including the
drawings, shall support claims to any such combination or
subcombination.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the invention that others
can, by applying knowledge within the skill of the art, readily
modify and/or adapt for various applications such specific
embodiments, without undue experimentation, without
departing from the general concept of the present invention.
Therefore, such adaptations and modifications are intended to
be within the meaning and range of equivalents of the dis-
closed embodiments, based on the teaching and guidance
presented herein.

The breadth and scope of the present invention should not
be limited by any of the above-described exemplary embodi-
ments or any actual software code with the specialized control
of hardware to implement such embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A computer-implemented method comprising:

displaying a graphic visualization layer in an interactive

development environment used to create an application
on a node of a computer network, the graphic visualiza-
tion layer comprising a plurality of graphical shapes that
are manipulated by a user to generate program language
code, wherein the plurality of graphical shapes com-
prise:
an application graphical shape representing the applica-
tion and comprising an application value entry field;

10

15

20

25

30

35

40

45

50

55

60

65

14

a resource graphical shape representing a resource for
the application and comprising a resource value entry
field;

an action graphical shape representing an action for the
application and comprising an action value entry
field; and

a task graphical shape representing a task of the action
and comprising a task value entry field;

receiving a selection of the application graphical shape;

receiving an application value for the application in the

application value entry field of the application graphical
shape;

receiving a selection of the resource graphical shape,

wherein the resource represented by the resource graphi-

cal shape is selected from a plurality of resources that are
each used to prepare the node for a type of application;
receiving a resource value for the resource in the resource
value entry field of the resource graphical shape;
receiving a selection of the action graphical shape;
receiving an action value for the action in the action value
entry field of the action graphical shape;

receiving a selection of the task graphical shape;

receiving a task value for the task in the task value entry

field of the task graphical shape; and

generating program language code based on the selection

ofthe application graphical shape, the application value,
the selection of the resource graphical shape, the
resource value, the selection of the action graphical
shape, the action value, the selection of the task graphi-
cal shape, and the task value, and wherein the program
language code is executable to install the application on
the node.

2. The method of claim 1, wherein the task represented by
the task graphical shape is selected from a plurality of tasks
that are each used to carry out the action for the application.

3. The method of claim 1, wherein the graphical shapes of
the graphic visualization layer restrict users to a program-
ming development sequence of application, resource, action
and task by restricting the interconnection of one shape to
another shape within the graphical virtualization layer based
on the respective graphical shape.

4. The method of claim 1, wherein the application and
resource graphical shapes are independent of a node configu-
ration prior to execution of the generated program language
code.

5. The method of claim 1, wherein the application and
resource graphical shapes are independent of an application
configuration prior to execution of the generated program
language code.

6. The method of claim 1, further comprising:

displaying a debugging interface in the interactive devel-

opment environment; and

creating a temporary installation of the application,

wherein the debugging interface incrementally steps

through creation of the temporary installation while dis-
playing a result of a respective incremental step.

7. The method of claim 1, wherein the program language
code is capable of creating separate applications without
modification of the program language code.

8. A system, comprising:

a processor; and

a memory coupled to the processor and comprising com-

puter readable program code embodied in the memory

that when executed by the processor causes the proces-
sor to perform operations comprising:

displaying a graphic visualization layer in an interactive

development environment used to create an application

US 9,235,322 Bl

15

on a node of a computer network, the graphic visualiza-

tion layer comprising a plurality of graphical shapes that

are manipulated by a user to generate program language

code, wherein the plurality of graphical shapes com-

prises:

an application graphical shape representing the applica-
tion and comprising an application value entry field;

a resource graphical shape representing a resource for
the application and comprising a resource value entry
field;

an action graphical shape representing an action for the
application and comprising an action value entry
field; and

a task graphical shape representing a task of the action
and comprising a task value entry field;

receiving a selection of the application graphical shape;

receiving an application value for the application in the
application value entry field of the application graphical
shape;

receiving a selection of the resource graphical shape,
wherein the resource represented by the resource graphi-
cal shape is selected from a plurality of resources that are
each used to prepare the node for a type of application;

receiving a resource value for the resource in the resource
value entry field of the resource graphical shape;

receiving a selection of the action graphical shape;
receiving an action value for the action in the action value
entry field of the action graphical shape;

receiving a selection of the task graphical shape;

receiving a task value for the task in the task value entry
field of the task graphical shape; and

generating program language code based on the selection
of'the application graphical shape, the application value,
the selection of the resource graphical shape, the
resource value, the selection of the action graphical
shape, the action value, the selection of the task graphi-
cal shape, and the task value, and wherein the program
language code is executable to install the application on
the node.

9. The system of claim 8, wherein the graphical shapes of
the graphic visualization layer restrict users to a program-
ming development sequence of application, resource, action
and task by restricting the interconnection of one shape to
another shape within the graphical virtualization layer based
on the respective graphical shape.

10. The system of claim 8, wherein the application and
resource graphical shapes are independent of a node configu-
ration and application configuration prior to execution of the
generated program language code.

11. The system of claim 8, the operations further compris-
ing:

displaying a debugging interface in the interactive devel-
opment environment; and

creating a temporary installation of the application,
wherein the debugging interface incrementally steps
through creation of the temporary installation while dis-
playing a result of a respective incremental step.

12. A computer program product, comprising:

a non-transitory computer readable storage medium hav-
ing computer readable program code embodied in the
medium that when executed by a processor causes the
processor to perform operations comprising:

displaying a graphic visualization layer in an interactive
development environment used to create an application
on a node of a computer network, the graphic visualiza-
tion layer comprising a plurality of graphical shapes that

15

20

30

40

45

50

16

are manipulated by a user to generate program language

code, wherein the plurality of graphical shapes com-

prises:

an application graphical shape representing the applica-
tion and comprising an application value entry field;

a resource graphical shape representing a resource for
the application and comprising a resource value entry
field;

an action graphical shape representing an action for the
application and comprising an action value entry
field; and

a task graphical shape representing a task of the action
and comprising a task value entry field;

receiving a selection of the application graphical shape;

receiving an application value for the application in the

application value entry field of the application graphical
shape;

receiving a selection of the resource graphical shape,

wherein the resource represented by the resource graphi-
cal shape is selected from a plurality of resources that are
each used to prepare the node for a type of application;
receiving a resource value for the resource in the resource
value entry field of the resource graphical shape;
receiving a selection of the action graphical shape;
receiving an action value for the action in the action value
entry field of the action graphical shape;

receiving a selection of the task graphical shape;

receiving a task value for the task in the task value entry

field of the task graphical shape; and

generating program language code based on the selection

ofthe application graphical shape, the application value,
the selection of the resource graphical shape and the
resource value, the selection of the action graphical
shape, the action value, the selection of the task graphi-
cal shape, and the task value, and wherein the program
language code is executable to install the application on
the node.

13. The non-transitory computer readable storage medium
of claim 12, wherein the task represented by the task graphi-
cal shape is selected from a plurality of tasks that are each
used to carry out the action for the application.

14. The non-transitory computer readable storage medium
of claim 12, wherein the graphical shapes of the graphic
visualization layer restrict users to a programming develop-
ment sequence of application, resource, action and task by
restricting the interconnection of one shape to another shape
within the graphical virtualization layer based on the respec-
tive graphical shape.

15. The non-transitory computer readable storage medium
of claim 12, wherein the application and resource graphical
shapes are independent of a node configuration and an appli-
cation configuration prior to execution of the generated pro-
gram language code.

16. The non-transitory computer readable storage medium
of claim 12, further comprising computer readable program
code causing the processor to perform:

displaying a debugging interface in the interactive devel-

opment environment; and

creating a temporary installation of the application,

wherein the debugging interface incrementally steps
through creation of the temporary installation while dis-
playing a result of a respective incremental step.

17. The non-transitory computer readable storage medium
of claim 12, wherein the program language code is capable of
creating separate applications without modification of the
program language code.

#* #* #* #* #*

